Sains Malaysiana 53(4)(2024): 839-850
http://doi.org/10.17576/jsm-2024-5304-09
Synthesis and Characterization of Hexahydropyrimidines
and Their New Derivatives
(Sintesis dan Pencirian
Heksahidropirimidina serta Terbitan Baharunya)
SHUKKUR A. HAMED1, ATHRAA THAKER1,
BILAL MAJID RUDAINI2, HASANAIN SALAH NAEEM3, MUNTAZ ABU
BAKAR4 & SITI AISHAH HASBULLAH4,*
1Department of Chemistry, College of Education
for Pure Science, University of Anbar, Al-Anbar, Iraq
2Department
of Pharmacy, Al-Maarif University College, Al Anbar,31001, Iraq
3Faculty
of Pharmacy, University of Al Muthanna, Samawah 66001, Iraq
4Department of Chemical Sciences, Faculty of
Science and Technology, Universiti Kebangsaan Malaysia, Selangor 43600,
Malaysia
Received: 8 September 2023/Accepted: 29 February 2024
Abstract
Three
new hexahydropyrimidine derivatives 1a – 1c were successfully
synthesized using the Mannich-type reaction. Furthermore, the synthesis of
three amino bases 2a – 2c was achieved through the reduction
reaction of pyrimidine compounds using hydrazine, followed by the substitution
reaction of nitro groups at diverse positions. Subsequently, one of the
synthesized amino base derivatives 2c underwent conversion into seven
Schiff bases 3a – 3g via a condensation reaction involving the
aforementioned amino base derivative and a selection of benzaldehyde
derivatives. Four amide compounds 4a – 4d have been synthesized by a
reaction of the secondary amine group in the pyrimidine ring with benzoyl chloride.
The products were subjected to comprehensive characterization employing
rigorous analytical techniques, including FT-), 1H-NMR (Proton
Nuclear Magnetic Resonance Spectroscopy), and LC-MS (Liquid Chromatography–Mass
Spectrometry). Additionally, the Molecular Electrostatic Potential (MEP) study
was carried out to further investigate the properties of the synthesized
compounds. The
yields of the three methods used to synthesise new hexahydropyrimidine
derivatives varied depending on the specific substituents added to the aromatic
ring.
Keywords: Hexahydropyrimidine; Mannich-type
reaction; Molecular Electrostatic Potential; Schiff-Bases
Abstrak
Sebanyak
tiga terbitan heksahidropirimidin 1a – 1c telah berjaya
disintesis menggunakan tindak balas jenis-Mannich. Selain itu, sintesis tiga
bes amino 2a – 2c telah berjaya dijalankan melalui tindak balas
penurunan sebatian pirimidina menggunakan sebatian hidrazina, diikuti oleh
tindak balas penukargantian oleh kumpulan nitro pada posisi berlawanan.
Sebatian 2c telah ditukarkan kepada tujuh bes Shiff 3a – 3g melalui tindak balas kondensasi melibatkan terbitan bes amino dan terbitan
benzaldehid terpilih. Empat sebatian amida 4a – 4d telah
disintesis melalui tindak balas kumpulan amina sekunder pada gelang pirimidina
dengan benzoil klorida. Hasil kemudian dicirikan secara komprehensif melibatkan
kepelbagaian teknik termasuk FT-IR (Spektroskopi Inframerah Fourier Transform), 1H-NMR (1H-Spektroskopi Nuklear Magnetik Resonan) dan LC-MS (Cecair
Kromatografi–Spektrometri Jisim). Tambahan pula, kajian Potensi Elektrostatik
Molekular (MEP) telah dijalankan untuk mengkaji dengan lebih mendalam ciri
sebatian yang disintesis. Hasil yang diperoleh daripada tiga kaedah berbeza
daripada sintesis sebatian baharu terbitan heksahidropirimidina menunjukkan
variasi bergantung kepada penukarganti pada gelang aromatik.
Kata kunci: Bes-Schiff; heksahidropirimidina;
Potensi Elektrostatik Molekul; tindak balas jenis Mannich
REFERENCES
Ahmed, S.M., Salih, K.M., Ahmad, H.O., Jawhar, Z.H. & Hamad, D.H.
2019. Synthesis, spectroscopic characterization and antibacterial activity of
new series of Schiff base derived from 4-aminoantipyrine and 2-amino
benzimidazole. Zanco Journal of Medical Sciences 23(2): 206-216.
Athraa, T. & Shukkur, A.H. 2021. A newly synthesis
and identification of 5-nitro-2, 4, 6-triphenyl hexahydro pyrimidine
derivatives structures. Turkish Journal of Physiotherapy and Rehabilitation 32(3): 8596-8606.
Bolduc, A., Rivier, L., Dufresne, S. & Skene, W.G.
2012. Spectral investigation of conjugated azomethines: A large palette of
colors possible with acid and oxidant doping. Materials Chemistry and
Physics 132(2-3): 722-728.
Cantillo, D., Moghaddam, M.M. & Kappe, C.O. 2013.
Hydrazine-mediated reduction of nitro and azide functionalities catalyzed by
highly active and reusable magnetic iron oxide nanocrystals. The Journal of
Organic Chemistry 78(9): 4530-4542.
Cantillo, D., Baghbanzadeh, M. & Kappe, C.O. 2012. In situ generated iron oxide nanocrystals as efficient and selective
catalysts for the reduction of nitroarenes using a continuous flow method. Angewandte
Chemie 124(40): 10337-10340.
Feng, J., Handa, S., Gallou, F. & Lipshutz, B.H.
2016. Safe and selective nitro group reductions catalyzed by sustainable and
recyclable Fe/ppm Pd nanoparticles in water at room temperature. Angewandte
Chemie 128(31): 9125-9129.
Goyal, M., Kumar, S., Bahadur, I., Verma, C. &
Ebenso, E.E. 2018. Organic corrosion inhibitors for industrial cleaning of
ferrous and non-ferrous metals in acidic solutions: A review. Journal of
Molecular Liquids 256: 565-573.
Hakiri, R., Ameur, I., Abid, S. & Derbel, N. 2018.
Synthesis, X-ray structural, Hirshfeld surface analysis, FTIR, MEP and NBO
analysis using DFT study of a 4-chlorobenzylammonium nitrate (C7ClH9N)+(NO3)–. Journal of Molecular Structure 1164: 486-492.
Hamed, S.A. 2020. A novel synthesis, molecular
structure by x-ray diffraction of 5-nitro-2,4,6- triphenylhexahydropyrimidine,
and some it’s derivatives. Systematic Reviews in Pharmacy 11(12): 1838-1847.
doi:10.31838/srp.2020.12.279
Jezuita, A., Ejsmont, K. & Szatylowicz, H. 2021.
Substituent effects of nitro group in cyclic compounds. Structural Chemistry 32(1): 179-203.
Kasimala, M. 2021. Synthesis of Schiff bases: A
Glimpse on recent literature. Caribbean Journal of Sciences and Technology 9(1):
7-9.
Khan, S.A., Ullah, Q., Almalki, A.S.A., Kumar, S.,
Obaid, R.J., Alsharif, M.A., Alfaifi, S.Y. & Hashmi, A.A. 2021. Synthesis
and photophysical investigation of (BTHN) Schiff base as off-on Cd2+ fluorescent chemosensor and its live cell imaging. Journal of Molecular
Liquids 328: 115407.
Leggio, A., Bagalà, J., Belsito, E.L., Comandè, A.,
Greco, M. & Liguori, A. 2017. Formation of amides: one-pot condensation of
carboxylic acids and amines mediated by TiCl4. Chemistry Central
Journal 11: 87.
Li, Y., Wang, Y. & Wang, J. 2008.
Microwave-assisted synthesis of amides from various amines and benzoyl chloride
under solvent-free conditions: A rapid and efficient method for selective
protection of diverse amines. Russian Journal of Organic Chemistry 44(3): 358-361.
Orlova, N., Nikolajeva, I., Pučkins, A.,
Belyakov, S. & Kirilova, E. 2021. Heterocyclic schiff bases of
3-Aminobenzanthrone and their reduced analogues: Synthesis, properties and
spectroscopy. Molecules 26(9): 2570.
Qin, W., Long, S., Panunzio, M. & Biondi, S. 2013.
Schiff bases: A short survey on an evergreen chemistry tool. Molecules 18(10): 12264-12289.
Rai, R.K., Mahata, A., Mukhopadhyay, S., Gupta, S.,
Li, P-Z., Nguyen, K.T., Zhao, Y., Pathak, B. & Singh, S.K. 2014.
Room-temperature chemoselective reduction of nitro groups using non-noble metal
nanocatalysts in water. Inorganic Chemistry 53(6): 2904-2909.
Scrocco, E. & Tomasi, J. 1978. Electronic
molecular structure, reactivity and intermolecular forces: An euristic
interpretation by means of electrostatic molecular potentials. Advances in
Quantum Chemistry 11: 115-193.
Shi, M., Ye, N., Chen, W., Wang, H., Cheung, C.,
Parmentier, M., Gallou, F. & Wu, B. 2020. Simple synthesis of amides via
their acid chlorides in aqueous TPGS-750-M. Organic Process Research &
Development 24(8): 1543-1548.
Tolba, M.S., Kamal El-Dean, A.M., Ahmed, M.,
Hassanien, R., Sayed, M., Zaki, R.M., Mohamed, S.K., Zawam, S.A. &
Abdel-Raheem, S.A.A. 2022. Synthesis, reactions, and applications of pyrimidine
derivatives. Current Chemistry Letters 11(1): 121-138.
Xian, L., Ma, C., Ouyang, Y., Di, J. & Zhang, Z.
2020. Synthesis of pyrimidine derivatives via multicomponent reaction catalyzed
by ferric chloride. Applied Organometallic Chemistry 34(11): e5921.
Zarecki, A.P., Kolanowski, J.L. & Markiewicz, W.T.
2020. Microwave-assisted catalytic method for a green synthesis of amides
directly from amines and carboxylic acids. Molecules 25(8): 1761.
*Corresponding
author; email: aishah80@ukm.edu.my
|